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Not a boring machine:

LCLS2 as a "microbuncher” paradise

F Longitudinal Space Charge + z-Slippage = Microbunching instability
F Instability seeded by shot noise or other noise (e.g. in photo-cathode laser)
F Other micro-structures from beam/laser interaction in LH
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Method: PIC code

(Macro)particle simulations

F IMPACT Pic Code + Access to NERSC computing facilities
One electron, One macroparticle
3D space charge (+ 1D CSR, rf wakes)

Two simulation approaches:
¥ Machine section-by-section studies; Track idealized macroparticle
distribution representing short section of physical bunch; Higher grid
resolution, faster run turn-around.

¥ Cathode-2-undulator simulations of realistic whole beam (will not be
shown here)

Always try to make contact with analytical models when feasible



More on the code

Twiss functions: IMPACT vs Elegant

F IMPACT =

IMPACT-t (injector) + IMPACT-z (Linac)
F written and maintained by J. Qiang (LBNL)

et al.

F Optimized for heavy-duty multi-processor runs

(NERSC);
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Uniform 3D grid (follows bunch
compression, transverse beam breathing)

Needed grid resolution can be demanding:
F Eg.ininjected beam, ~20 grid points to

resolve 1lum -> 100k z-grid nodes needed

for ~5mm beam

s2e runs, Linac, ~1B macroparticles,

n, Xn, Xxn, = 32 x 32 x 2048 grid,
take ~3 hours on 1000 processors; miss out
some of the effects.



The laser heater doing its job

Longitudinal phase space
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A story of hidden
correlations ...

LH chicane
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X' (urad)

correlations have disappeared L. n/z phase-advance

from the X'/Z plane ...
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3D space charge effects associated
with microstructure heat the beam

Discovered during LCLS1
commissioning
(“Trickle heating effect”).




The ‘trickle’ heating & shot-noise seeded heating

L
Trickle heating effect for two choices
of laser wavelengths (Q = 100pC)
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Heating due to shot-noise seeded
microbunching

F Microbunching induced by Laser Heater chicane causes energy modulation

Laser Heater
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uBI Gain curve through LH Chicane:

choose Rz, to reduce instability

(Old) baseline:

|R56| = 14mm

various R56L (ko[ 5keV
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Note:

gain curves based on
simplified model excluding
collective effects in chicane
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F Old LH chicane baseline |Rs¢| close to worst...
F Here, reducing (vs. increasing ) |Rs¢| is the more effective way to reduce gain




We redesigned the LH chicane

to have a smaller |Rg¢|

* Redesign chicane, keeping the same max D, = 7. 5cm [lengthen drifts between 1-2 and 3-4 dipoles]

Old baseline LHC |R56| = 14mm Redesigned LHC with |Rs¢| = 3.5mm
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Aside note on randomness
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¥ Macroparticle distributions (~1B) are created by IMPACT using

a pseudo-random generator. Is this good enough?
F As of now, no evidence of problems, but one should run randomness

tests to be sure
F Random numbers are for sale on WWW.RANDOM.ORG ...




LH Chicane with smaller |R;,| does indeed reduce
shot-noise seeded heating

Observed energy spread vs. Laser Pulse Energy
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F Note: here slice energy spread of injected beam ogy~0
F In modified LH chicane design trickle heating is somewhat larger at higher laser pulse

energies (see next slide)




Trickle heating: Compare simulation with analytical
model (Z. Huang) ... and get reasonable agreement

L
Observed energy spread vs. Laser Pulse Energy
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Further modification of LH chicane would
almost eliminate trickle heating

15

Current baseline LH chicane

(Rs¢ = —3.5mm, D4, = 7.5cm)
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Trickle heating mostly gone
Shot-noise induced uBI heating remains small
Drawbacks:

— longer chicane (~12m)




Transport through doglegs/bypass greatly

‘\'Q

093m 4

amplifies the microl%{nching instability

Smooth model beam at exit of BC2
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Beam as observed at HXU FEL
is strongly microbunched

F  Macroparticle simulation of flat-top model beam with gaussian

uncorrelated energy spread at exit of BC2
F  representing short section of Q = 100pC bunch with Laser Heater
turned on.

F  Microbunching on sub-um scale develops through DL (entrance of
bypass) and transport section between u-wall and FEL
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Problem starts with DL1: look at spectrum
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Aside on 1D vs. 3D
(and fine print too fine to read)

¥ Linear theory of gain with 1D LSC model predicts essentially the same spectrum
through DL1 as through a (short) 4-bend chicane with identical |[R5|.
¥ Theory doesn’t reproduce spectrum observed at exit of Dogleg (DL1) very
well.

F We are still baking the cookies — not ready for last word.
¥ Limitation of the 1D LSC model within dogleg ?
. Why the smoothing at higher spatial frequencies? Longitudinal mixing induced by finite transverse emittance:

Beam size in dogleg: 0,~30um Dogleg dipoles: 6 = 0.024 rad,
o, ~1.2urad Lpgrp = 1m

Smoothing from finite transverse beam size: AZ ~Rg510, = 80,~0.7um

L
finite angular spread: AZ ~Rg,0,, = % 00,,~0.015um

. As the beam exits the 2" bend in dogleg high-frequency components of energy modulations accrued within DL
should be washed away and we would expect no additional contribution to the bunching observed at exit of DL1
(effectively, it is as if LSC was not active in DL; as predicted by 1D linear theory)

. However: if LSC 3D effects were important bunching induced by space charge within chicane may not be as
strongly suppressed as expected based on a 1D model (Ref. experience with OTR measurements in LCLS1
downstream of DL at injector during commissioning, D. Ratner et al.)

k
. Are we in 3D regime? % ~0.4 for A = 0.1um. Is this large enough to claim 3D effects are important?

BTW, energy-spread induced mixing is a bit smaller Az ~2nR5q05~0.14um



Non-local R;, compensation?
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Try local Rs, compensation

R56 = +100um
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Make all main doglegs locally isochronous (to HXR)
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Non-local compensation of Rz, not as effective.
Alternate local compensation schemes may be possible
Robustness against jitters, errors?

Effect on transverse emittance?

Delaying compression to exit of bypass would also be
a way to reduce microbunching

* Correlated energy chirp removed
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Conclusions

F The Laser Heater: watch out what you ask for!
¥ Anomalous heating (trickling, microbunching)

F Long transport lines are potential trouble makers.

¥ Making the transport lines locally isochronous as much as possible
should fix the problem.

F After having taken the pain to try to avoid it,
Could we use the uBI for something good?
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