Dynamics of fluctuations in high temperature superconductors far from equilibrium

L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Superconductors display amazing properties:

- Dissipation-less conductivity
- Perfect diamagnetism
- Magnetic flux quantization

STM image of vortex lattice

Superconductivity is described by a paring amplitude of time reversal symmetry states

Average of the pairing amplitude becomes non-zero below the transition temperature

$$\psi(x) = |\psi(x)|e^{i\phi(x)}$$

$$\Delta = \frac{1}{L^d} |\int \langle \psi(x) \rangle dx |$$

An energy gap $\Delta\,$ develops in the excitation spectrum

Typical interaction time between electrons forming a Cooper pair \hbar/Δ

In the ballistic regime electrons will be paired over a distance $\xi_0 \approx \frac{\hbar v_F}{\Delta}$

In conventional superconductors $\xi_0 \approx 1 \, \mu m$

10⁸ Cooper pairs occupy a volume ξ_0^3 and fluctuations of ψ take place on a negligible temperature window

In high temperature superconductors $\xi_0 pprox 2$ nm

Fluctuations of $\psi(x) = |\psi(x)| e^{i\phi(x)}$ are measurable

Copper-Oxigen compound **Bi₂Sr₂CaCu₂O_{8+δ}**

Can we be sensitive enough and fast enough to observe superconducting fluctuations in real time?

Fast enough is possible with femtosecond lasers

Sensitive enough if we down-convert the optical pulses in the midinfrared spectral region

Time Resolved TeraHertz spectroscopy

Detection of the dynamics

Size of the critical region

Approaching the critical point $\longrightarrow T_c$

fluctuating domains of the ordered phase

Size of fluctuations grows $\xi \cong \frac{1}{(T-T_c)^{\nu}}$

The dynamics becomes slower

$$\tau_c \cong \frac{1}{(T - T_c)^{\beta}}$$

Universality:

power laws depend only on dimensionality, symmetry of the order parameter and interaction range

CRITICAL

Slowing down of fluctuations in the critical region

Recovery time
$$au_c \cong \frac{1}{(T-T_c)^{\beta}}$$

9

CRITICAL

Scaling !!

In the critical region all curves follow an universal power law

Hint of universality
$$\displaystyle rac{1}{1+(au/ au_c)^lpha}$$

In the gapless phase it is possible to derive he Time Dependent Ginzburg Landau (TDGL) equation

$$\frac{d\psi}{d\tau} + \frac{\psi}{\tau_{GL}} (1 + \frac{|\psi|^2}{\Delta^2}) - D\nabla^2 \psi + \eta(x,\tau) = 0 \qquad \begin{array}{l} \text{M. Cyrot} \\ \text{Rep. Prog. Phys. (1973)} \end{array}$$

The system is described by a single diverging time scale

$$\tau_{GL} = \frac{\xi^2}{D} \propto \frac{1}{T - T_c}$$

Theory predicts
$$\tau_{GL}^{-1} = \frac{c^2}{48\pi\sigma_{dc}\lambda^2}$$
 $\tau_{GL}^{-1} = 4(T/T_c - 1) \text{ ps}^{-1}$

We add white noise to account for the finite possibility of thermally excited configurations $\ \psi(x,\tau)$

$$\langle \eta(x,\tau)\eta(x,\tau')\rangle = 2Sk_BT\delta(x-x')\delta(\tau-\tau')$$

Sudden quench hypothesis

Fast degrees of freedoom reach equilibrium conditions Just after photoexcitation

Slow degrees of freedom follow the dynamics imposed by a coarse grained free energy

justified only in a gapless regime

Temporal evolution of the coherence length

TDGL predicts an exponential decay and not power law!

TDGL accounts for the amplitude of the fluctuations and the scaling

$$\tau_c \cong \frac{1}{(T - T_c)}$$

60

80

T (K)

100

Scaling law respected also in underdoped sample

$$\frac{1}{1 + (\tau/\tau_c)^{\alpha}}$$
$$\alpha = 1.2$$

The critical exponent α does not depend on doping

The slowing down of ψ matches the power law

$$\tau_c \cong \frac{1}{(T-T_c)^\beta} \qquad \text{with} \quad \beta = 1.7$$

Different from TDGL!

6

Which pictures emerge from our data?

Fluctuations extend up to 1.4 T_c both in underdoped and optimally doped cuprates

We do not observe a pseudogap at optimal doping

We observe a pseudogap in a strongly underdoped compound

The pseudogap is a crossover without any critical behaviour

M. Norman Adv. Phys. (2005) S. Hufner, Rep. Prog. Phys. (2008)

P. Wahl Nature physics (2012)

Origin of the powerlaw

Possible reasons

- ✓ Failure of the sudden quench hypothesis
- $\checkmark\,$ coarsening related to disorder
- \checkmark presence of a conserved density

Scaling $\frac{1}{1+(\tau/ au_c)^{lpha}}$ Presence of a conserved field m

TABLE I. Some dynamical models treated by renormalization-group methods.

Model	Designation	System	Dimension order of parameter	Non-conserved fields	Conserved fields	Non-vanishing Poisson bracket
	А	Kinetic Ising anisotropic magnets	n	ψ	None	None
Relaxational	В	Kinetic Ising uniaxial ferromagnet	n	None	ψ	None
	C	Anisotropic magnets structural transition	n	ψ	т	None
Fluid	Н	Gas—liquid binary fluid	, 1	None	ψj	$\{\psi,\mathbf{j}\}$
Symmetric planar magnet	E	Easy-plane magnet, $h_z = 0$	2	ψ	m	$\{\psi,m\}$
Asymmetric planar magnet	F	Easy-plane magnet, $h_z \neq 0$ superfluid helium	2	ψ	т	$\{\psi, m\}$
Isotropic antiferromagnet	G	Heisenberg antiferromagnet	3	ψ	m	$\{\psi,\mathbf{m}\}$
Isotropic ferromagnet	J	Heisenberg ferromagnet	3	None	ψ	$\{\psi,\psi\}$

Halperin classification scheme

P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 1977

Doping indepent scaling law

$$\frac{1}{1 + (\tau/\tau_c)^{\alpha}}$$

. . . .

U(1) does not describe high temperature superconductivity

Which model predicts the correct behaviour?

SO(4) competition with charge density wave

SO(5) competition with staggered antiferromagnetism

Angle Resolved Photoelectron Spectroscopy

$$E = hv - \phi - E_{kin}$$
$$k_{\parallel} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \cdot \sin \vartheta$$

 φ Direction

Fermi surface with 6.3 eV photons

Photoexcitation of nodal quasiparticle

Signal dominated by the non-equilibrium distribution f(ω, τ)

Relaxation ruled by the energy dissipation in the lattice modes

K-K_F(¹/a)

In the superconducting phase the Cooper pairs prevent the fast energy relaxation of the electrons

5

Similar to THz transmission

Fast component becomes visible for fluences higher than 60 microJ/cm²

Closing of superconducting gap?

Single Particle gap filled at 15 microJoule/cm²

C. L. Smallwood PRB 2014

Superfluid density vanishes with 12 microJoule/cm²

Superconductivity in optimally doped BSCCO is destroied at 16 microJoule/cm²

Existence of photoexictation densities with no order parameter and weak dissipation

Presence of a regime with no phase coherence

$$\Delta = \frac{1}{L^d} |\int \langle \psi(x) \rangle dx| = \mathbf{0}$$

but with finite stiffness

Conclusions

The dynamics of critical fluctuations in high temperature superconductors suggest the coupling to a conserved field

Critical slowing down deviates from Gaussian fluctuations in the underdoped region of the phase diagram

At low temperatures, a regime of excitation densities exist with no long range order but weak energy dissipation

Collaborators

T. Kampfrath and M. Wolf

TR-THz measurements

B. Sciolla and G. Biroli

Theory of critical phenomena

K. Van Der Beek and C. Piovera

K. Van Der Beek and C. Piovera

Far infrared pulses too long to resolve dynamics of fluctuations

Paraconductivity measurements with low THz probes

Armitage

Nature Physics 7, 298 (2011)

The temporal evolution of the order parameter is ruled by the dissipation of non-equilibrium quasiparticles via phonon emission

Contribution of XFELs

