Elettra Sincrotrone Trieste

Elettra -y
Sincrotrone
Trieste

) -

School on TANGO Controls system

Design patterns

Giacomo Strangolino

IT programmer at Elettra — Sincrotrone Trieste

Assistant professor 2010-2014, University of Trieste,
Faculty of engineering, principles of computer science

mailto: giacomo.strangolino@elettra.eu
http://www.tango-controls.org

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

http://www.tango-controls.org/

Elettra -y
Sincrotrone r
Trieste ,""‘ A,

Design patterns

v Describe a problem;

v Describe a solution:

They help
v Find appropriate objects;
v Determine objects granularity and interface;
v Determine object dependencies;

v Make object oriented software reusable (inheritance vs.
composition) and evolvable,

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste '.,/ N

Design patterns

Example 1. Bridge
v Implementation switches at run time

v Abstractions and implementations can be extended by
subclassing.

v Different abstractions and implementations can be combined,;

v Changes in implementation do not affect clients (binary
compatibility!!!),

v Hide implementation from clients

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste e

Design patterns

Example 1. Bridge

Abstraction Implementor

- impl : Implementor

+ implementation()
+ function() ®

- this.impl.implementation(ﬁ

RefinedAbstraction Concretelmplementor

+ refinedFunction() + implementation()

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste e N

Design patterns

Example 2. Abstract factory

v Makes a system independent of how its products are created,
composed, represented,;

v A system can be configured with one of multiple families of
products;

« A family of related products is designed to be used together;

v Provide a class library of products and reveal just their
interface, not implementations.

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Design patterns
q Sncrotrone gnp TANGAL.

Example 2. Abstract factory

“Arferinoes

ﬂ AbstractFactory

i Crese=Productay)
i Crese=Producis])

ey inoes
9 AbstractProducta — Zmptz]

a ConcreteFactory2 a ConcreteFactoryl

B CreseProductad) B CreseProductad)

@ CresteFroduciE]) “ ——

“Arferinoes

9 AbstractProductB

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Design patterns
q Sncrotrone gnp TANGA.

Example 2. Abstract factory

“Arferinoes

ﬂ AbstractFactory

i Crese=Productay)
i Crese=Producis])

ey inoes
9 AbstractProducta — Zmptz]

a ConcreteFactory2 a ConcreteFactoryl

B CreseProductad) B CreseProductad)

@ CresteFroduciE]) “ ——

“Arferinoes

9 AbstractProductB

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Sincrotrone
Trieste

= 4

interface IButton

{
void Paint();
1
interface IGUIFactory
{
IButton CreateButton();
b

class WinFactory : IGUIFactory

{
public IButton CreateButton()

{
}

return new WinButton();

3

class 0SXFactory : IGUIFactory

{
public IButton CreateButton()

{
}

return new 0SXButton();

Giacomo Strangolino

Design patterns

Example 2. Abstract factory

class WinButton :

{

}

class 0SXButton :

{

IButton

public wvoid Paint()

{
¥

J/Render a button

TButton

public void Paint()

{
¥

J/Render a button

ir

class Program

{

static void Main()

{

Var appearance = Settings.Appearance;

IGUIFactory factory;
switch (appearance)

{
case Appearance.Win:
factory = new WinFactory();
break;
case Appearance.0SX:
factory = new 0SXFactory();
break;
default:
throw new System.NotImplementedException();
1

var button = factory.CreateButton();
button.Paint();

School on TANGO Control System, Trieste 4-8th July 2016

Y A

=

Design patterns :

9}
S ;7
Example 3. Service locator

v Use a central registry known as service locator, which on
request returns the necessary objects to perform a task;

v It's a simple run time linker: code can be added at run time;

v Applications can select and remove items from the s. locator
(replace a component with another one)

v Large sections of a library can be completely separated, the only
link being the service locator.

v Model an object which is singular in nature (logging, memory
management, audio device...)

v Can be applied to existing classes not designed around it (unlike
Singleton).

10
Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste oo u

Design patterns

Example 3. Service locator

v The registry must be unique (can be a bottleneck for concurrent
applications)

v The registry hides the class' dependencies;

v The registry can be a security vulnerability: it allows outsiders
to inject code into an application;

v Things placed in the registry are black boxes with regards to
the rest of the system: harder to detect and recover from their

errors
1=

v
%

Use dependency injection!!

11

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone
Trieste A -

Design patterns

Example 3. Service locator

class Audio /* service Iinterface */

{
public:
void playSound(int soundID) = 0O;
I3
class ConsoleAudio : public Audio
{
public:
void playSound(int soundID)

{

}
I3

12
Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone
Trieste .

Design patterns

Example 3. Service locator

class Locator /* implementation of the service locator */

{
public:
Audio getAudio() { return mService; } /* does the locating */
void provide(Audio * service) { mService = service; }
private:
Audio *mService;
I3
class ConsoleAudio : public Audio
{
public:
void playSound(int soundID) { }
I3
13

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste ,""‘ S,

Design patterns

Example 3. Service locator

v Register a provider before anything tries to use the service:

ConsoleAudio *audio = new ConsoleAudio();
Locator::provide(audio);

v Get the instance of audio service to use:

MyClass::MyClass() {
Audio *audio = Locator::getAudio();
audio->playSound(VERY_LOUD_BANG);

}

v

14
Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

o .. Design patterns
\/_/ Trieste

Example 4. Dependency injection

Class MyClass{

public:

MyClass (Audio *audio) { mAudio = audio; }
private:

Audio *mAudio;

specific class instance
(service) is injected,
not creay
2

~ MyClass *myClass = new MyClass(new ConsoleAudio())

Dependency

v Control is-inverted with respect to Service locafo
v Easy to test MyClass, providing a dummy Aud

v External code () constructs the service and calls the client to inject it.

15
Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

Elettra -y
Sincrotrone r
Trieste ,""‘ A,

Design patterns

Bibliography

v E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns — Elements of Reusable Object-Oriented software,
Addison Wesley, 1998

v https://www.infog.com/articles/Succeeding-Dependency-Injection

» http://gameprogrammingpatterns.com/service-locator.html

16
Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

https://www.infoq.com/articles/Succeeding-Dependency-Injection

&Y - The End TANGEY,

 Thanks for your attention

mailto: giacomo.strangolino@elettra.trieste.it

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

