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Design patterns

v Describe a problem;

v Describe a solution:

They help
v Find appropriate objects;
v Determine objects granularity and interface;
v Determine object dependencies;

v Make object oriented software reusable (inheritance vs.
composition) and evolvable,

Giacomo Strangolino School on TANGO Control System, Trieste 4-8th July 2016



Elettra -y
Sincrotrone r
Trieste '.,/ N

Design patterns

Example 1. Bridge
v Implementation switches at run time

v Abstractions and implementations can be extended by
subclassing.

v Different abstractions and implementations can be combined,;

v Changes in implementation do not affect clients (binary
compatibility!!!),

v Hide implementation from clients
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Design patterns

Example 1. Bridge

Abstraction Implementor

- impl : Implementor

+ implementation()
+ function() ®

- this.impl.implementation(ﬁ

RefinedAbstraction Concretelmplementor

+ refinedFunction() + implementation()
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Design patterns

Example 2. Abstract factory

v Makes a system independent of how its products are created,
composed, represented,;

v A system can be configured with one of multiple families of
products;

« A family of related products is designed to be used together;

v Provide a class library of products and reveal just their
interface, not implementations.
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Example 2. Abstract factory
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interface IButton

{
void Paint();
1
interface IGUIFactory
{
IButton CreateButton();
b

class WinFactory : IGUIFactory

{
public IButton CreateButton()

{
}

return new WinButton();

3

class 0SXFactory : IGUIFactory

{
public IButton CreateButton()

{
}

return new 0SXButton();
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Design patterns

Example 2. Abstract factory

class WinButton :

{

}

class 0SXButton :

{

IButton

public wvoid Paint()

{
¥

J/Render a button

TButton

public void Paint()

{
¥

J/Render a button

ir

class Program

{

static void Main()

{

Var appearance = Settings.Appearance;

IGUIFactory factory;
switch (appearance)

{
case Appearance.Win:
factory = new WinFactory();
break;
case Appearance.0SX:
factory = new 0SXFactory();
break;
default:
throw new System.NotImplementedException();
1

var button = factory.CreateButton();
button.Paint();
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Example 3. Service locator

v Use a central registry known as service locator, which on
request returns the necessary objects to perform a task;

v It's a simple run time linker: code can be added at run time;

v Applications can select and remove items from the s. locator
(replace a component with another one)

v Large sections of a library can be completely separated, the only
link being the service locator.

v Model an object which is singular in nature (logging, memory
management, audio device...)

v Can be applied to existing classes not designed around it (unlike
Singleton).

10
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Design patterns

Example 3. Service locator

v The registry must be unique (can be a bottleneck for concurrent
applications)

v The registry hides the class' dependencies;

v The registry can be a security vulnerability: it allows outsiders
to inject code into an application;

v Things placed in the registry are black boxes with regards to
the rest of the system: harder to detect and recover from their

errors
1=

v
%

Use dependency injection!!

11
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Design patterns

Example 3. Service locator

class Audio /* service Iinterface */

{
public:
void playSound(int soundID) = 0O;
I3
class ConsoleAudio : public Audio
{
public:
void playSound(int soundID)

{

}
I3
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Example 3. Service locator

class Locator /* implementation of the service locator */

{
public:
Audio getAudio() { return mService; } /* does the locating */
void provide(Audio * service) { mService = service; }
private:
Audio *mService;
I3
class ConsoleAudio : public Audio
{
public:
void playSound(int soundID) { }
I3
13
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Design patterns

Example 3. Service locator

v Register a provider before anything tries to use the service:

ConsoleAudio *audio = new ConsoleAudio();
Locator::provide(audio);

v Get the instance of audio service to use:

MyClass::MyClass() {
Audio *audio = Locator::getAudio();
audio->playSound(VERY_LOUD_BANG);

}

v
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Example 4. Dependency injection

Class MyClass{

public:

MyClass ( Audio *audio) { mAudio = audio; }
private:

Audio *mAudio;

specific class instance
(service) is injected,
not creay
2

~ MyClass *myClass = new MyClass(new ConsoleAudio() )

Dependency

v Control is-inverted with respect to Service locafo
v Easy to test MyClass, providing a dummy Aud

v External code ( ) constructs the service and calls the client to inject it.
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&Y - The End TANGEY,

 Thanks for your attention
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